More on Trig Derivatives and Chain Rule

Warm-up: Indicate the derivatives of the following trig functions.

1.
$$\frac{d}{dx}[\tan x]$$

2. $\frac{d}{dx}[\csc x]$
3. $\frac{d}{dx}[\sin x]$
4. $\frac{d}{dx}[\sec x]$
5. $\frac{d}{dx}[\cot x]$
6. $\frac{d}{dx}[\cos x]$

Examples: Find the derivative of each function.

1.
$$y = 2\sin x$$
 2. $y = \sin 2x$ 3. $y = \sin^2 x$

4.
$$y = \sin^2 2x$$
 5. $y = \sin \sqrt{x}$ 6. $y = \sqrt{\sin x}$

7.
$$y = \sqrt{\sin 2x}$$

Derivative by Table Example: Given the following information, find the following derivatives at x = 2.

x	f(x)	f'(x)	g(x)	g'(x)
2	-3	6	3	2
3	n/a	4	n/a	n/a

8.
$$y = [f(x)]^3$$
 9. $y = f(g(x))$

More on Trig Derivatives and Chain Rule

Class Work: Take the derivatives of the following functions.

1.
$$y = \sin 3x$$

2. $y = x \sin x$
3. $y = \cos\left(\frac{\pi}{2} - x\right)$
4. $y = \frac{\sin x}{x}$
5. $y = \frac{x}{\sin x}$
6. $y = x^3 \sin^2 x$
7. $y = \cos 2x - \sin 3x$
8. $y = \cos^4 x^4$
9. $y = \sin^2 x + \cos^2 x$

10.
$$y = \sqrt{\sin x + 2}$$
 11. $y = \tan \sqrt{3x - 1}$ 12. $y = \sec(x^2 - 2x + 3)$

13)
$$y = \cot^4\left(\frac{x}{2}\right)$$
 14) $y = \frac{\sin x}{1 + \cos^2 x}$ 15) $y = \sin(\cos x)$